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Transverse permeability of fibrous porous media
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In this study, the transverse permeability of fibrous porous media is studied both experimentally and
theoretically. A scale analysis technique is employed for determining the transverse permeability of various
fibrous matrices including square, staggered, and hexagonal arrangements of unidirectionally aligned fibers, as
well as simple two-directional mats and simple cubic structures. In the present approach, the permeability is
related to the porosity, fiber diameter, and tortuosity of the medium. In addition, the pressure drop in several
samples of tube banks of different arrangements and metal foams are measured in the creeping flow regime.
The pressure-drop results are then used to calculate the permeability of the samples. The developed compact
relationships are successfully verified through comparison with these experimental results and the data reported
by others. Our results suggest that fiber orientation has an important effect on the permeability; however, these
effects are more pronounced in low porosities, i.e., ε < 0.7.
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I. INTRODUCTION

Study of flow in fibrous porous media is important in many
natural and industrial processes such as physiological transport
phenomena [1], filtration [2–4], composite fabrication [5,6],
compact heat exchangers [7,8], paper production [9], and
fuel cell technology [10,11]. As such, prediction of the flow
properties of fibrous materials, including permeability and
inertial coefficient, has drawn the attention of numerous
researchers. Authors have employed various theoretical
and experimental techniques to investigate the problem.
Comprehensive reviews of the pertinent literature can be
found in Refs. [4,6,12]. Permeability, which can be interpreted
as the flow conductance of the solid matrix, is related to
geometrical features of the solid matrix, including particle
size and shape, pore size, and pore distribution.

Fibrous materials can be divided into one-, two-, and
three-directional media (see Fig. 1). In one-directional (1D)
structures, the axes of fibers are parallel to each other. In two-
directional (2D) fibrous matrices, the axes of fibers are located
on planes parallel to each other with random positions and ori-
entations on these planes. The axes of fibers in three-directional
(3D) structures are randomly positioned and oriented in space.
1D and 2D materials are anisotropic, e.g., see [13,14] for more
details. However, 3D structures can be considered isotropic,
e.g., metal-foam samples studied in this study. The considered
microstructures are indeed anisotropic; thus, this study can
only be applied to transverse flows. Transverse direction for
1D fibers is normal to the fibers’ axes, and for 2D materials
is perpendicular to the fibers’ planes [12]. In isotropic 3D
structures, transverse flow is perpendicular to any plane.

Due to the complex geometry and their random nature,
developing exact solutions for flow and permeability of actual
fibrous materials is highly unlikely. Nonetheless, to perform
preliminary design and optimization and, more importantly, to
recognize and investigate the key parameters involved in the
flow properties, approximate solutions often suffice.
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To estimate the permeability of the fibrous structures, sev-
eral researchers have modeled the complex microstructure of
the porous media with simplified 1D “unit cells” [15–23]. The
models developed theoretically for transverse permeability of
1D structures are plotted against experimental data, collected
from various sources, in Fig. 2. Most of the listed models have
limited range of application as reported by others. It can be
seen from Fig. 2 that the model of Tamayol and Bahrami [21]
captures the trends of experimental data over the entire range
of porosity. However, the model of Tamayol and Bahrami [21]
is limited to square arrays of fibers.

Theoretical studies of permeability of 2D and 3D materials
are not as frequent as 1D arrangements, which is, in part,
due to the geometrical complexity of these media. A selection
of the existing models for 2D and 3D structures [2,12,24–
26] are plotted and compared with existing experimental data
collected from several sources in Figs. 3 and 4, respectively. It
can be seen that the existing models are not accurate and can
not be used over the entire range of porosity.

Therefore, the objectives of this paper are as follows:
(i) Develop a theoretical approach that is applicable to 1D,

2D, and 3D fibrous matrices and can accurately capture the
trends observed in experimental data.

(ii) Investigate the effects of relevant geometrical parame-
ters involved and identify the controlling parameters.

(iii) Perform an independent experimental study on perme-
ability of fibrous structures to verify the developed models.

A scale analysis technique is employed to predict the
permeability of a variety of unit cells including square,
staggered, and hexagonal arrangements of 1D fibers, simple
2D mats, and simple cubic structures. This method, which
was originally applied to fibrous media by Clague et al.
[27], is modified to improve its accuracy. Moreover, compact
relationships are presented for determining the permeability
of each category of fibrous porous media, i.e., 1D, 2D,
and 3D, as a function of porosity and fiber diameter. In
addition, pressure drop is measured for creeping flow through
several samples of tube banks and aluminum foams with
1D and 3D structures, respectively. The developed solutions
are successfully compared with experimental and numerical
results for a wide range of geometries and materials.

046314-11539-3755/2011/83(4)/046314(9) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.046314


ALI TAMAYOL AND MAJID BAHRAMI PHYSICAL REVIEW E 83, 046314 (2011)

FIG. 1. (Color online) Structures with different fibers orientation; (a) 1 directional (1D), (b) 2 directional (2D), and (c) 3 directional (3D).

II. GEOMETRICAL MODELING

Based on the orientation of fibers in the medium, the
fibrous matrix can be divided into 1D, 2D, or 3D structures.
The simplest representation of 1D structures or generally
fibrous media is the ordered arrangements of unidirectionally
aligned cylinders. In this paper, several ordered structures
including square, staggered, and hexagonal arrays of fibers
are considered where flow is normal to fibers axes (see Fig. 5).
The solid volume fractions ϕ for the arrangements shown in
Fig. 5 are related to the distance between the centers of adjacent
fibers S and the fibers’ diameter d:

ϕ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

π d2

4 S2
Square

π d2

2
√

3 S2
Staggered

π d2

3
√

3 S2
Hexagonal

(1)

To study woven or textile structures with nonoverlapping
fibers, the geometry shown in Fig. 6 is considered where fluid

FIG. 2. Comparison of the existing models for square arrange-
ments with experimental data collected from various sources.

flow is normal to the fibers planes. The following relationship
exists between ϕ and other geometrical parameters in the
structure shown in Fig. 6:

ϕ = πd

4S
. (2)

In 3D structures such as metal foams, fibers can have any
arbitrary orientation in space, [see Fig. 7(a)]. Following Jack-
son and James [26], the microstructure of 3D fibrous materials
is modeled by a simple cubic (SC) arrangement. Figure 7(b)
shows a SC structure used to model 3D media in this study
and the transverse flow direction. The relationship between the
solid volume fraction and other geometric parameters of SC
arrangement considered in this study is [28]

ϕ = 3πd2

4S2
−

√
2
d3

S3
. (3)

III. EXPERIMENTAL APPROACH

Experimental data for creeping flow through fibrous struc-
tures of our interests are not abundant in the open literature.
As such, several samples of tube banks with 1D square

FIG. 3. Comparison of the existing models for 2D structures with
experimental data reported by others.
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FIG. 4. Comparison of the existing models for 3D structures with
experimental data for various materials.

and staggered fiber arrangements and metal foams with 3D
microstructures shown in Fig. 8 are tested using glycerol.
To fabricate the tube bank samples, polymethyl methacrylate
(PMMA) sheets of 3-mm thickness were cut and drilled using
a laser cutter with the accuracy of 0.05 mm. Glass capillary
tubes with diameters of 1.5 mm were inserted and fixed using
an adhesive tape to form tube banks, as shown in Fig. 8. The
lengths of the tube banks were selected such that a minimum
of 15 rows of cylinders existed in the flow direction for each
sample. Aluminum 6101 metal-foam samples were purchased
from ERG Duocel (Oakland, CA) with a number of pores per
inch (PPI) between 10 and 40. The porosity of the samples was
also calculated independently by weighting the samples and
measuring their volumes. The fiber diameters were estimated
using scanning electron microscopy (SEM) images and also
compared with the data reported by others [29] for similar
materials. The properties of the samples are summarized in
Table I.

A custom-made gravity-driven test bed, illustrated in Fig. 8,
was built that included an elevated reservoir, an entry section,
sample holder section, and an exit section with a ball valve. The
reservoir cross section of 300 × 300 mm2 was large enough
to ensure that the variation of the pressure head was negligible
during the experiment. The pressure drop across the samples
was measured using a differential pressure transducer PX-154

FIG. 6. (Color online) The 2D unit cell considered in the present
study.

(BEC Controls) with 1% accuracy. To minimize the entrance
and exit effects on the pressure-drop measurements, pressure
taps were located few rows apart (at least three rows) from
the first and the last tube rows in the tube bank samples and
1 cm apart from the sample edge for metal foams. Glycerol
was used as the testing fluid and the bulk flow was calculated
by weighting the collected test fluid over a period of time.

The Reynolds number was defined based on the fibers’
diameter, i.e., Re = ρUDd/μ, and was kept below 0.001 to
ensure creeping flow regime in the tested media. As such, the
permeability of the samples was calculated using the Darcy
equation (4) in the following section.

Assuming Darcy’s law in a porous structure implies a linear
relationship between the pressure drop and the fluid velocity
in the media. This linear relationship can be observed in Fig. 9
for tube banks with square and staggered fiber arrangements
and metal-foam samples.

IV. MODEL DEVELOPMENT

Experimental observations have shown that a linear rela-
tionship exists between the volume-averaged superficial fluid
velocity UD and the pressure drop; this is called Darcy’s
law [4]:

−dP

dx
= μ

K
UD, (4)

where μ is the fluid viscosity and K is the permeability of the
medium. Darcy’s relationship is empirical, convenient, and
widely accepted; this equation holds when flow is in creeping
regime [4]. However, one should know the permeability
beforehand to use the Darcy’s equation. Permeability can be

FIG. 5. (Color online) Considered unit cells
for ordered 1D structures: (a) square, (b) stag-
gered, and (c) hexagonal arrays of cylinders.

046314-3



ALI TAMAYOL AND MAJID BAHRAMI PHYSICAL REVIEW E 83, 046314 (2011)

FIG. 7. (Color online) 3D structures: (a) metal foam, a real
structure (scale bar is equal to 500 μm); (b) simple cubic arrangement,
modeled unit cell used in this analysis.

calculated through the pore-scale analysis of flow in the solid
matrix. In the creeping regime, the pore-scale velocity �V is
governed by Stokes equation

−→∇ · �V = 0, (5)

μ∇2 �V = −−→∇ P. (6)

A scale analysis is followed for determining the resulting
pressure drop. In this approach, the scale or the range of
variation of the parameters involved is substituted in governing
equations, i.e., derivatives are approximated with differences
[30]. Following Clague et al. [27] and Sobera and Kleijn [31],
half of the minimum opening between two adjacent cylinders
δmin is selected as the characteristic length scale over which
rapid changes of velocity occur (see Fig. 5). Therefore, Eq. (6)
scales as

−�P

�
∼ μ

δ2
min

| �V |, (7)

where � is the characteristic length scale in the flow direction
(see [31]) for more details. In case of nontouching cylinders
with their axes perpendicular to the flow direction, the
maximum velocity occurs in the section with minimum frontal
area. Sobera and Klein [31] proposed to use the average
velocity in the section with minimum frontal area as the
characteristic velocity scale, i.e., | �V | ∼ UD/β; where β is the
ratio of the minimum to the total frontal areas in the unit cell.
However, this assumption was only accurate for highly porous

structures ε> 0.8, and overpredicted the pressure drop in low
porosities [31]. Carman [32] argued that a fluid particle should
travel in a tortuous path of length Le to pass through a sample
of size L. Therefore, it is expected that the resulting velocity
scale for a constant pressure drop be inversely related to Le/L;
this ratio is called the tortuosity factor τ . Thus, the scale of the
pore-level velocity magnitude becomes

| �V | ∼ UD

τ β
. (8)

Substituting from Eq. (8) for velocity scale and using δmin

as the length scale, permeability can be calculated as

K = C β δ2
min τ, (9)

where C is a constant that should be determined through
comparison with data. Therefore, one needs to know the ratio
between the minimum to total frontal area β and the tortuosity
factor τ to be able to calculate the permeability.

A. Tortuosity Factor

The tortuosity factor is defined as the ratio of the average
distance Le that a particle should travel in a media to cover a
direct distance of L. Due to its importance in mass, thermal,
and electrical diffusion in porous media, several theoretical
and empirical relationships have been proposed for tortuosity
calculation in the literature; good reviews can be found
elsewhere [33,34]. Any relationship proposed for tortuosity
should satisfy three conditions [33]: τ> 1; limε→1 τ = 1;
limε→0 τ → ∞. One of the most popular empirical models for
determination of tortuosity, which satisfies all these conditions,
is Archie’s law [35]

τ =
(

1

ε

)α

=
(

1

1 − φ

)α

, (10)

where α is a constant and ε is the porosity. α is a tuning
parameter that is found through comparison of Archie’s

FIG. 8. (Color online) The gravity-driven test bed and the tested
samples: (a) actual test setup, (b) schematic of the apparatus; (c) a
sample of ordered tube banks; and (d) a sample of aluminum foam.
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TABLE I. The properties of the tested samples.

Sample type ε d(mm) L (mm) Orientation Measured permeability K (m2)

Tube bank (square) 0.8 1.5 69 1D 1.38 × 10−7

Tube bank (square) 0.85 1.5 80 1D 3.74 × 10−7

Tube bank (square) 0.9 1.5 68 1D 5.44 × 10−7

Tube bank (staggered) 0.7 1.5 74 1D 1.00 × 10−7

Tube bank (staggered) 0.9 1.5 72 1D 7.75 × 10−7

Metal foam (PPI = 10) 0.93 0.4 137 3D 2.53 × 10−7

Metal foam (PPI = 20) 0.93 0.3 135 3D 1.45 × 10−7

Metal foam (PPI = 40) 0.94 0.2 120 3D 0.81 × 10−7

empirical correlation, i.e., Eq. (10), with experimental data.
Boudreau [33], through comparison with data, showed that
α = 0.5 provides a reasonable estimate for tortuosity in packed
beds. The axes of fibers in 1D and 2D microstructures are
perpendicular to the transverse flow direction, which is similar
to the flow through packed beds of spherical particles. As
a result, α = 0.5 provides a good estimate for the tortuosity
of 1D and 2D structures as well. However, in 3D structures,
some of the fibers (roughly 1/3, consider an equally spaced
equally sized simple cubic unit cell) are parallel to the flow
direction [36] and do not affect the tortuosity of the medium.
The study of Tomadakis and Sotirchos [12] also showed that
3D fibrous structures are less tortuous in comparison with 1D
and 2D matrices. Consequently, an α smaller than 0.5 should
be used for 3D microstructures. The deviation of Archie’s
law with α = 0.3 from the tortuosity values predicted by the
model of Tomadakis and Sotirchos [24] is less than 20%. In
this paper, our model for permeability of 3D structures (α =
0.3) and the present experimental results and the data collected
from various sources are in good agreement.

V. RESULTS AND DISCUSSIONS

Equation (9) relates the permeability of fibrous media to
the minimum opening between adjacent fibers δmin, the ratio
between minimum to total frontal area β, and tortuosity factor
τ , which can be calculated from Eq. (10). In the following
sections, using geometrical properties of the considered
microstructures, compact models will be developed that relate
the permeability to the solid volume fraction.

A. Unidirectionally Aligned Arrangements

For the three different ordered 1D unit cells shown in
Fig. 5, it can be seen that β = (S − d)/S and δmin = (S − d)/2.
Therefore, Eq. (9) can be rewritten as

K = C
(S − d)3

S
√

1 − φ
. (11)

TABLE II. The average relative difference between the permeability values predicted by different models with the numerical and
experimental data for 1D square, 1D staggered, and 3D simple cubic structures over the entire range of porosity.

1D square arrays
(compared to experimental data)

Relative Relative
Author(s) difference (%) Author(s) difference (%)

Tamayol and Bahrami [21] 24.9 Happel [15] 47.5
Gebart [23] 26.8 Drummond and Tahir [19] 245.2
Van der Westhuizen [20] 45.8 Present scale analysis 15.8
Sahraoui and Kaviany [22] 25.6

1D staggered arrays
(compared to present experimental data and numerical results of Higdon and Ford [28])

Gebart [23] 11.6 Present scale analysis 26.6
Happel [15] 38.8

3D simple cubic structure
(compared to numerical results of Higdon and Ford [28])

Tomadakis and Robertson [12] 24.9 Present scale analysis 19.3
Jackson and James [26] 247.3
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Combining Eqs. (1) and (11), the dimensionless permeabil-
ity of the ordered structures becomes

K

d2
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.16

[
π
4ϕ

−3
√

π
4ϕ

+3−
√

4ϕ

π

]
√

1−ϕ
, square

0.16

[
π

2
√

3ϕ
−3

√
π

2
√

3ϕ
+3−

√
2
√

3ϕ

π

]
√

1−ϕ
, staggered

0.16

[
π

3
√

3ϕ
−3

√
π

3
√

3ϕ
+3−

√
3
√

3ϕ

π

]
√

1−ϕ
, hexagonal.

(12)

The constant values in Eq. (12), 0.16, are evaluated through
comparison of the proposed model with the experimental and
numerical data found in the literature. In Fig. 10, Eq. (12) is
compared with the present experimental results and the data
collected by others [37–43]. As one can see, the model is
in agreement with experimental data over the entire range of
porosity. These experiments were conducted using different
fluids including air, water, oil, and glycerol with a variety of
porous materials such as metallic rods, acrylic cylinders, and
carbon fibers.

In Fig. 11, the predicted results of Eq. (12) for staggered
arrangement of fibers are compared with the present experi-
mental data and numerical results of Higdon and Ford [28]. It
can be seen that the proposed model can accurately predict the
numerical results in the entire range of porosity. The average
relative differences between the numerical and experimental
data with the values predicted by various models for 1D
structures are reported in Table II.

B. Two-Directional Structures

The ratio of the minimum frontal to the total unit-cell areas
for the 2D structure, shown in Fig. 6, is not exactly known.
Therefore, using the Forchheimer law, which estimates the
average pore-scale velocity as UD/ε [4], the magnitude of the
pore-level velocity scale is estimated as

| �V | ≈ UD

τε
. (13)

The length scale, where the rapid changes of the velocity occur,
is assumed as δmin = (S − d)/2. Therefore, the permeability
reads as

K = C(S − d)2ετ. (14)

Substituting for geometrical parameters from Eq. (2) and
the tortuosity from Archie’s law, the dimensionless permeabil-
ity becomes

K

d2
= 0.008

√
(1 − ϕ)

[(
π

4ϕ

)2

− 2
π

4ϕ
+ 1

]
. (15)

FIG. 9. Measured pressure drop for samples of tube bank with
square fiber arrangement.

The constant value in Eq. (15), i.e., 0.008, is found through
comparison with experimental data collected from different
sources (see Fig. 12). It can be seen that Eq. (15) captures the
trends of the experimental data collected from different sources
over a wide range of porosity. The experiments were conducted
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FIG. 10. (Color online) Comparison of the proposed model for
square arrangements with experimental data measured in this paper
or reported by others.

on glass rods, glass wool, cotton wool, kapok with application
in filtration [44], alloy fibers [45], fiber reinforcing mats with
application in molding and composite fabrication [46,47],
and gas diffusion layers [10]. Kostornov and Shevchuk [45]
performed experiments with several fluids and they observed
that the permeability was dependent on the working fluid, i.e.,
water resulted in higher permeability than alcohol. Models
of Tomadakis and Robertson [12] and Van Doormaal and
Pharoah [25] are also compared with Eq. (15) in Fig. 12.
For highly porous materials (ε > 0.8), the correlation proposed
by Van Doormaal and Pharoah [25] also accurately predicts
the experimental data, while the model of Tomadakis and

FIG. 11. (Color online) Comparison of the proposed model and
current experimental data with numerical results of Higdon and Ford
[28] for staggered arrangements.

FIG. 12. (Color online) Comparison of this model and models of
Van Doormaal and Pharoah [25] and Tomadakis and Robertson [12]
with experimental data for 2D structures.

Robertson [12] captures the trends of experimental data in
lower porosities.

C. Three-Directional Structures

For simple cubic arrangement that is considered in this
study as a simple representation of 3D fibrous materials, the
ratio of the minimum frontal to the unit-cell areas is β = (S −
d)2/S2 and δmin = (S − d)/2. Therefore, the permeability of

FIG. 13. (Color online) Comparison of the proposed model for
3D structures, models of Jackson and James [26] and Tomadakis and
Robertson [12], present experimental results, and data reported by
others.
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FIG. 14. Effect of fiber orientation on the permeability of fibrous
structures.

3D structures becomes

K

d2
= 0.08

(S − d)4

S2 d2ε0.3
, (16)

where the ratio of S to d is calculated from Eq. (3). The
constant in Eq. (16) is found to be 0.08 through comparison
of this equation with the numerical data reported by Higdon
and Ford [28] for SC arrangements over a wide range of
porosity. Figure 13 includes the present model, models of
Tomadakis and Robertson [12] and Jackson and James [26],
current experimental measurements, and experimental data
collected from different sources. The plotted data are based
on the permeability values reported for polymer chain in
solutions [48], glass wool randomly packed, stainless-steel
crimps [32], metallic fibers [49], and aluminum metal foams
[50]. It can be seen that the present model is in agreement
with the experimental data and numerical results collected
from a number of studies over the entire range of porosity.
The average relative differences between the numerical data
reported by Higdon and Ford [28] and Eq. (15), the model of
Tomadakis and Robertson [12], and the model of Jackson and
James [26] are listed in Table II.

VI. EFFECT OF FIBER ORIENTATION ON
THE PERMEABILITY

To investigate the effect of the fibers’ arrangement on
the permeability of the fibrous structures, the proposed
relationships for 1D, 2D, and 3D arrays are plotted in Fig. 14.
It can be seen that the square arrangements and 2D structures
have similar permeabilities and 3D structures are the most
permeable microstructure; this is in agreement with the results
reported by Tomadakis and Robertson [12]. Moreover, the
effect of microstructure is more significant in low porosities,
where ε < 0.7 and the deviations become less pronounced in
higher porosities; this is in line with our previous observations
for parallel flow through 1D fibers [51].

VII. CONCLUSIONS

A scale analysis technique was employed for analyzing
pressure drop and permeability of fibrous media. The fibrous
materials were represented by unit cells that were assumed to
be repeated throughout the medium and the present approach
was applied to a variety of fibrous matrices including square,
staggered, and hexagonal unidirectionally aligned fiber ar-
rangements, as well as simple two- directional mats and simple
cubic structures. Moreover, compact relationships have been
reported for the considered geometries. In addition, pressure
drop in samples of tube banks of different arrangements and
aluminum foams with various PPIs were measured in the
creeping flow regime. The developed compact relationships
were successfully verified through comparison with a large
number of experimental and numerical data collected from
various sources, over a wide range of porosity. Our results
indicated that the microstructural effects were more significant
for low porosities. Moreover, 3D structures had the highest
permeability in comparison with 1D and 2D structures.

Since the present model relates permeability to the tortu-
osity, fiber size, and distribution, one can conclude that it can
potentially be extended to include randomness effects in real
fibrous porous structures.
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